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This paper describes a highly robust and efficient hybrid parallel computing method for the periodic eddy current problems 

considering motions. This hybrid parallel is composed of two levels of parallelization with the distributed memory parallel based on 

MPI (Message Passing Interface) at the higher level and shared memory parallel based on multi-threading at the lower level. 

Application examples will be presented to demonstrate the effectiveness of this method.  
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I. INTRODUCTION 

HE numerical simulations of nonlinear periodic eddy 

currents have a wide range of low-frequency 

electromagnetic applications which include actuators, 

electrical machines, transformers, and so on.  There are two 

typical methods to numerically analyze nonlinear periodic 

eddy current problems: harmonic balance method and time 

domain method [1][2]. The harmonic balance method [3] is a 

very efficient method to deal with the nonlinearity, but it is 

very difficult to handle motions [2]. In order to handle 

motions, the physical equations have to be solved in the time 

domain. In literatures, several methods have been proposed to 

solve nonlinear periodic eddy currents problems [1][2][4-9] in 

time domain. In this paper, we propose a hybrid parallel 

method, which leverages high performance computing for 

solving nonlinear periodic eddy currents problems in the time 

domain.  Furthermore, we demonstrate its parallel efficiency 

by examining an application example. 

II. PRECONDITIONED ITERATIVE SOLVER 

     The finite element method discretization of nonlinear 

periodic eddy current problems produces a semi-discrete form 

as    
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The solution and excitation vectors satisfy the periodic 

condition 
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with τ the period of the system. Note that  txS ,  and 

 txT ,  are dependent on the solution vector  tx  to reflect 

the non-linearity of the eddy current problems. Applying the 

backward Euler method and the Newton-Raphson method, we 

have the following linearized matrix equations.  
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In the above,  
iii TStK   and 

ii TM  are the Jacobian 

matrices, 
ix  is the increment of solution during nonlinear 

iterations, and ib is the residual during the nonlinear iterations. 

The submatrix on the right upper corner is due to the property 

of the periodic condition. 

 

An iterative solver with a preconditioner can be used to solve 

the block matrix (3). A preconditioner is an approximation to 

the block matrix (3) such that it can accelerate the conver-

gence of iterations of the iterative solver. There are many ways 

to construct a preconditioner. For example, reference [8] pro-

posed a preconditioner based on incomplete LU factorizations 

of a group of submatrices, but the convergence is very slow 

and it may fail to converge for real engineering problems. In 

order to accelerate the convergence, we have investigated sev-

eral preconditioners and found the Gauss-Seidel precondition-

er based on the lower triangular part of the block matrix, i.e.,  
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 is overall highly robust and efficient. Also, it naturally 

facilitates a hybrid parallel scheme, which will be detailed in 

next section.  

III. HYBRID PARALLEL  

       There are two fundamental methods of parallel 

computing: distributed memory parallel and shared memory 

parallel.  This proposed method leverages hybrid parallel 

computing, which uses both distributed memory parallel and 

shared memory parallel. This hybrid parallel scheme method 

is composed of two levels of parallel with the distributed 

memory parallel based on MPI (Message Passing Interface) at 

the higher level and shared memory parallel based on multi-

threading at the lower level, as indicated in Fig.1. The entire 

nonlinear transient simulation is divided into a number of 

groups along the time-axis with one MPI process handling one 

group. For each MPI process, the shared memory 
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parallelization can be further applied for submatrix 

assembling, factorizations and postprocessing for each time 

step within one group.  

 

 
Fig. 1. Hybrid parallel. High level: Distributed memory; 

Low level: Shared memory.   

IV. APPLICATION EXAMPLE  

The proposed method has been applied to the simulations of 

different types of electrical machines, transformers and other 

magnetic devices. As a typical example, Fig. 2 shows a three 

phase synchronous machine with nonlinear-magnetic materials 

for both rotor and stator.  The speed is 1000 RPM and driven 

frequency is 50 Hz. One period is divided into 128 time steps.  

The number of mesh elements is 388659.  The number of non-

linear iteration is 18, and the number of iterations of iterative 

solver is only 2 or 3 for each nonlinear iteration with setting 

The tolerance of residual of the iterative solver to 10-6. The 

total number of iterations of iterative solver being 49. Fig.3 

shows the calculated torque. It can be seen that the torque pro-

file has entered into steady-state immediately from time 0 due 

to the constrain of periodic condition.  Table I presented the 

performance of the machine. The speedup is evaluated against 

two MPI processes. In this case, the speedup using distributed 

memory with a single thread is 4.7 for 16 MPI process. It can 

be further increased to 11 using hybrid parallel with 16 MPI 

processes and 8 threads per MPI process.  More numerical 

results will be discussed in the full paper. 

 

 
 

Fig.2. Three phase synchronous machine. 

 
 

  

Fig.3. The steady-state torque profile of three phase syn-

chronous machine. 

 

 
TABLE I 

PERFORMANCE OF HYBRID PARALLEL 
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Number of 

MPI  
processes 

 
Number of 

threads per MPI 

process 

 
Simulation time  

(hours:minutes:seconds) 

 Speedup  

 

2 1 (59:47:01) 1 

4 1 (33:09:26) 1.8 

8 1 (19:49:10) 3.0 

16 1 (12:47:29 4.7 

16 2 (08:47:47) 6.8 

16 4 (06:25:58) 9.3 

16 8 (05:34:25) 11 


